martes, 2 de junio de 2015

El efecto fotoeléctrico

El efecto fotoeléctrico

 
En 1887 Heinrich Rudolf Hertz descubrió que una descarga eléctrica entre dos electrodos ocurría más fácilmente cuando sobre uno de ellos incidía luz ultravioleta. Posteriormente, Philipp Lenard demostró que la luz ultravioleta facilita la descarga eléctrica ya que provoca la emisión de electrones desde la superficie del cátodo. Sin embargo a Albert Einstein le valió este experimento para contradecir algunos aspectos de la teoría electromagnética clásica,[12] [13] y su correcta interpretación le valió el premio Nobel de 1921. El efecto fotoeléctrico ha sido uno de los ejemplos más interesantes para ilustrar la naturaleza corpuscular de la luz, llevando al desarrollo de la mecánica cuántica durante el siglo XX.
Cuando la luz de determinada longitud de onda incide sobre la superficie de un metal, este emite un flujo de electrones. En la época en la que se realizó este descubrimiento, la teoría ondulatoria de la luz era el único modelo disponible. Según esta, el número de electrones emitidos debía aumentar proporcionalmente a la intensidad de la luz; además debería existir un margen de tiempo entre la incidencia de los fotones y la emisión de los electrones. Al proceder a la experimentación, ninguna de estas condiciones resultaron ser ciertas. La intensidad luminosa no afecta la emisión de los electrones, pero si la frecuencia, ya que el efecto fotoeléctrico solo se produce para ciertos valores de esta y el margen de tiempo es irrelevante. La teoría ondulatoria, por tanto, no resulta válida a la hora de explicar el efecto fotoeléctrico.
Para justificar el fenómeno, Einstein empleó una idea propuesta por Max Planck en 1900 para explicar una paradoja similar surgida a la hora de interpretar la radiación del cuerpo negro. Planck consideró la luz como una serie de paquetes discretos a los que denominó cuantos en lugar de considerarla como una onda. Utilizando esta teoría, Einstein determinó que la energía de los cuantos, partículas que llamamos fotones, está relacionada con la frecuencia de la onda luminosa mediante la expresión:
E = hf
Donde E es la energía cinética del fotón, f su frecuencia y h la constante de Planck (6,63 * 10^{-34} J.s) Una vez establecida la energía del fotón, el efecto fotoeléctrico se convierte en un caso simple de aplicación del principio de conservación de la energía.
Cuando la luz incide sobre una superficie, está aportando una cierta energía, E en particular a los electrones de la superficie. Existe un valor concreto de energía necesario para «despegar» el electrón, llamado energía umbral y también función de trabajo,\Phi_u. El exceso de energía por encima de \Phi_u aparecerá en forma de energía cinética del electrón,E_cel cual adquirirá la velocidad que corresponda a citada energía cinética.
E(foton) = \Phi_u + E_c(electron)
Existen varios procedimientos para verificar esta ecuación. Uno consiste en medir las diferencias de potencial entre los electrodos de una célula fotoeléctrica con un voltímetro al iluminar la célula con luz monocromática de diversas longitudes de onda. Como consecuencia, se crearán distintas diferencias de potencial V entre los electrodos y aparecerá un paso de corriente producida por los electrones arrancados del cátodo. Una variación de este experimento consistiría en conectar la célula a una batería con las polaridades invertidas y ajustar el valor de la misma hasta que la corriente de la célula descendiera a cero, lo que significaría que el campo opuesto creado es capaz de evitar que los electrones se desprendan de la superficie metálica. Ambos métodos deben verificar el principio de conservación de la energía y por tanto deben cumplir que la energía cinética de los electrones emitidos procede de la diferencia de potencial V existente entre los electrodos de la fotocélula en el primer caso y en el segundo representa el potencial V opuesto que se aplica y que anula la corriente establecida. Por ello, la ecuación se puede escribir de la siguiente manera:
qV = hf - \Phi_u


Donde q es la carga del electrón y V el potencial de frenado.
La solución que Einstein propuso al problema del efecto fotoeléctrico resuelve por completo las contrariedades del modelo ondulatorio. Al tratar la luz como cuantos, se puede comprender que la intensidad de la luz no afecta a la energía del electrón, sino a la cantidad de electrones que se emiten, todos ellos con la misma energía, la cual depende de la frecuencia. Por la misma razón, este efecto no se aprecia para todas las frecuencias, sino solo cuando el fotón tiene la suficiente energía para superar la energía umbral. Por último, no existen motivos para que exista un margen de tiempo para apreciar el efecto ya que el electrón se desprende tan pronto como el fotón impacta la superficie. Este hecho constituye una prueba definitiva de la naturaleza corpuscular de la luz.

No hay comentarios:

Publicar un comentario